IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK FOR ODOR
IDENTIFICATION USING E-NOSE

Shyam Gopal Sharma
EMIL/ISTC, CSIO/CSIR, Chandigarh
shyam_sharma53@rediffmail.com

Extended Abstract: Developing an electronic nose system to implement Back-propagation algorithm of the Artificial Neural Network for odor identification of different tea samples is a challenging one to improve the interactivity with the user. One approach to chemical vapor identification is to build an array of sensors, where each sensor in the array is designed to respond to a specific chemical. With this approach, the number of unique sensors must be at least as great as the number of chemicals being monitored. It is both expensive and difficult to build highly selective chemical sensors.

When an artificial neural network is combined with a sensor array the number of detectable chemicals is generally greater than the number of sensors. Also less selective sensors, which are less expensive, can be used with this approach. Once the artificial neural network is trained for chemical vapor recognition, operation consists of propagating the sensor data through the network to generate the output. Since the feed forward calculations are simply a series of vector-matrix multiplication, unknown chemical can be rapidly identified in the field.

The electronic nose is developed, based on metal oxide gas sensor array and back-propagation neural network for tea classification. The sensor array consists of six Tagushi Gas Sensor (TGS) type devices. To recognize the pattern formed by the six sensors, six neurons are used in the input layer. Since, it is required only to classify four tea samples, two neurons are used in the output layer. The four tea samples (different tea flavors) are procured, namely, black tea, green tea, vanilla tea and jasmine tea. Under the relatively similar conditions, each sample of tea is measured as a function of time. Prior to the exposure of tea samples, the sensor array is tested with air ambient. Then the electronic nose is trained by using one set of four tea samples without pre-processing step.

Keywords: Odor, Tea flavor, Metal oxide gas sensor, Sensor array, Back Propagation Neural Network.

1. INTRODUCTION

Olfaction system (sense of smell by the nose) is one of three chemoreceptor systems of humans. Two others are gustation (sense of taste by the tongue) and trigeminal (sense of irritation) systems. The sense of smell is used to detect volatile compounds. Compared to the two others, the most contribution in the perception of flavor is the olfaction. Odorants are typically small hydrophobic, organic molecules containing one or two functional groups. The size, shape and polar properties of the molecules determine its odor properties. All naturally occurring odors are complex mixtures that are the mixture of many, different types of odorant molecules [Dutta, et.al.,2003a; Dutta, et.al., 2003b].

One of the interesting odors is the flavor of tea. In the conventional fabrication of tea, the process and the quality control are determined solely by using human olfactory of expert (Yu and Wang, 2007). However, the determination of quality of tea in a large industry may be performed by some expensive instruments like Gas Chromatography (GC) and Mass Spectrometry (MS). In the case of small Berkala MIPA, 17(3), September 2007 58 and medium industries in Indonesia, these instruments are generally not available.

Since there is a large number of organic compounds present in tea, it is difficult to process tea to any accepted standard. The aroma and flavor are two quality factors of tea, which depends upon the number of volatile compounds present and their ratios. For example, main volatile compounds in black tea are t-2-Hexenal, cis-3-Hexena, t-2-Hexenyl formate, Linalool oxide (furanoid-cis), Linalool oxide (furanoid-trans), Linalool, Phenylacetaldehyde, Linalool oxide, Pyranoid-cis, Methylsal-cylate, Geraniol, Benzylalcohol 2- phenylethanol, cis-Jasmon + ß-ionone (Yu and Wang, 2007). Therefore, in conventional tasting, it is very difficult to keep a consistency in the standard of tea quality from batch to batch during a production process. This is because the performance of the human taste panel is known to vary due to various factors Bhattacharyya, et.al., 2007.

Human panel tasting is inaccurate, laborious and time consuming due to adaptation, fatigue, infection and adverse mental state at times. To imitate a
specific part of the mammalian olfactory system, we develop a prototype electronic nose for tea classification. It consists of a gas sensor array and a back propagation neural network as a pattern recognition system. An electronic nose can be a better alternative to conventional methods for tea classification. This is because electronic nose is a fast, reliable and robust technology.

2. EXPERIMENTAL

In order to realize an electronic nose, we used sensor array consisting of six metal oxide gas sensors as listed in Table 1. In a lot of commercial electronic nose applications, tin oxide sensors like Tagushi Gas Sensor (TGS) type devices are used because of their low cost and their high sensitivity. Since this sensor type is relatively lack of selectivity, it can be advantage of the detection of odor (gas mixture) by arranging in array. Therefore, it is obvious that by combining a number of non-selective sensors, the combined sensor signals yield more information about a given aroma or flavor than that of an individual sensor signal. In this case, each gas sensor contributes to the formation of pattern of odor. The set-up for electronic nose system for tea classification is depicted in Fig. 2

![Figure 2. Set-up for electronic nose system for tea classification](image)

The electronic nose is a system consisting of three functional components that operate serially on an odorant sample, a sample handler, an array of gas sensors, and a signal processing (pattern recognition) system. The output of electronic nose can be the identity of the odorant. Because odor is a mixture of volatile compounds (gases), each sensor in an e-nose is not high selective sensor. It has a different sensitivity from which the electronic nose can identify an odorant sample and estimates its concentration. Before hand a database of known odorants must be created and presented to the sensor array. In term of intelligent system, the electronic nose should able to recognize the patterns of odor that have trained to it.

Table 1. Gas sensors used in the array

<table>
<thead>
<tr>
<th>No</th>
<th>Sensor</th>
<th>Application</th>
<th>Vapor detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TGS2620</td>
<td>Solvent Vapor Detection</td>
<td>Alcohol, organic</td>
</tr>
<tr>
<td>2</td>
<td>TGS2611</td>
<td>Combustible gas detection</td>
<td>Methane natural gas</td>
</tr>
<tr>
<td>3</td>
<td>TGS822</td>
<td>Solvent Vapor detection</td>
<td>Alcohol vapor</td>
</tr>
<tr>
<td>4</td>
<td>TGS813</td>
<td>Combustible gas detection</td>
<td>General hydrocarbon</td>
</tr>
<tr>
<td>5</td>
<td>TGS826</td>
<td>Toxic gas detection</td>
<td>Ammonia</td>
</tr>
<tr>
<td>6</td>
<td>TGS825</td>
<td>Toxic gas Detection</td>
<td>Hydrogen sulphide</td>
</tr>
</tbody>
</table>

We have four tea samples (black tea, green tea, vanilla tea and jasmine tea). Each sample, without any additional manipulation, was placed into glass vessels (Fig. 2). The vessels had two small holes in their covers, to allow the headspace to be analyzed with the electronic nose equipment.

As shown in Fig. 3, back propagation neural network that consisted of six neurons in input layer, three neurons in the hidden layer and two neurons in the output layer is employed for pattern recognition system. The back propagation trained multi-layer perceptron (MLP) paradigm is the most popular pattern recognition method in aroma analysis today.

Six neurons in the input layer are used because the number of gas sensors used in the array is six. Meanwhile, the output layer consisted of two neurons. This is because by using two neurons, we can combine to make four different samples of tea. Furthermore, once an electronic nose has been ‘trained’, it does not require a skilled operator and can potentially obtain the results in the order of few tens of seconds. In the electronic nose system, a pattern recognition engine enables the system to perform complex aroma analysis of the sensor signals.

![Figure 3. Back propagation artificial neural network for pattern recognition system of tea](image)
The sensor system comprises six tin oxide gas sensors from the same housed in a sensor chamber. The sensors were chosen on the basis that the sensor responds well to different odors that are understood to be given off by tea, as can be seen in Table 1. The selected sensors are designed to respond to gases such as the cooking vapours, ammonia, hydrogen sulphide, alcohol, toluene, xylene, etc. which are also specified by the manufacturer.

<table>
<thead>
<tr>
<th>No.</th>
<th>Neuron 1</th>
<th>Neuron 2</th>
<th>Classified Tea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Black tea</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Green tea</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>Jasmine tea</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Vanilla tea</td>
</tr>
</tbody>
</table>

The electrical conductance of the sensors varies in the presence of reducing/oxidizing gases. A thin plastic tube was connected from the input to the sensor chamber to one of the two holes in the cover of both glass vessels. The headspace of the vessel containing the tea samples (four tea samples with four different types were used for experiment) and the reference vessel were sampled in sequence as follows.

A sample of measurement typically took 5 min to complete in sample vessel. The sampling time was chosen to optimize the stability of the sensor response to odor emitted by the tea samples. The air removed from the vessel by the pump was replaced by air from the room (see Fig. 1).

Room air from our laboratory was used as carrier gas as we aimed to make the experiment as simple as possible. Any variation of the ‘base line’ (which may be due to different volatiles present in room air) was monitored. There was no significant change in the base line during the time period of the experiments and consistent classification results from different data processing algorithms suggests that any variations of this type were not significant. One measurement comprises taking, alternatively, a headspace sample from the tea vessel followed by the reference vessel.

Reference vessel: Here, the tube from the input to the sensor chamber was connected to a glass vessel. The air ambient from the room was pumped into the sensor chamber through this vessel. In this way the sensors were allowed to return to their baseline level over a period of some 10 min after sampling the headspace of the tea vessel. The sensors’ responses to the pure air ambient in the reference vessel are used as the baseline response for the experiments. This was to make sure that the electronic nose system was responding to the tea aromas rather than to any residual smell of the glass vessel or only to the different environmental conditions. During the process of the measurements, a sample of each sensor’s resistance was taken every 10s and stored in a data file for subsequent processing.

3. RESULT AND DISCUSSION
4. CONCLUSION
A prototype of electronic nose based on metal-oxide gas sensor array is under development.

5. REFERENCES